The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).
According to TCM, the major activity of the blood is to circulate through the body, nourishing and moistening the various organs and tissues. Disharmonies of the blood may manifest as “deficient” blood or “congealed” blood. If deficient blood exists and affects the entire body, the patient may present with dry skin, dizziness, and a dull complexion. Congealed blood may manifest as sharp, stabbing pains accompanied by tumors, cysts, or swelling of the organs (i.e., the liver).4 The key organs associated with blood are the heart, liver, and spleen.
Anti-diabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients - Possible regeneration of the islets of langerhans in streptozotocin-diabetic rats given gymnema sylvestre leaf extracts - Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2 - Effectiveness of Cinnamon for Lowering Hemoglobin A1C in Patients with Type 2 Diabetes: A Randomized, Controlled Trial - Cloves protect the heart, liver and lens of diabetic rats - Cloves improve glucose, cholesterol and triglycerides of people with type 2 diabetes mellitus - Effects of rosemary on lipid profile in diabetic rats - Inhibition of Advanced Glycation End-Product Formation by Origanum majorana L. In Vitro and in Streptozotocin-Induced Diabetic Rats - Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension - Metformin-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention? - Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats - Antiglycation Properties of Aged Garlic Extract: Possible Role in Prevention of Diabetic Complications - Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats - Effect of Ginger Extract Consumption on levels of blood Glucose, Lipid Profile and Kidney Functions in Alloxan Induced-Diabetic Rats - Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats - Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats - A REVIEW ON ROLE OF MURRAYA KOENIGII (CURRY LEAF) IN (DIABETES MELLITUS – TYPE II) PRAMEHA - Capsaicin and glucose absorption and utilization in healthy human subjects - Inhibition of Advanced Glycation End-Product Formation by Origanum majorana L. In Vitro and in Streptozotocin-Induced Diabetic Rats - Use of Fenuqreek seed powder in the management of non-insulin dependent diabetes mellitus - Ginseng and Diabetes: The Evidences from In Vitro, Animal and Human Studies -  

The diabetes health care team also will let you know what your child's target blood sugar levels are. In general, kids with type 1 diabetes should test their blood sugar levels with a blood glucose meter at least four times a day. Depending on your child's management plan and any problems that arise, blood sugar levels could need to be tested more often.
The above two rules are the only dietary rules you need to maintain ideal weight for the rest of your life, assuming you apply common sense and avoid extremes. The diet works by building in regular periods of insulin relief, keeping your body from becoming resistant to insulin. Following these two rules, you will maintain your weight and health by never entering the vicious cycle of increasing insulin resistance.