Meanwhile, American Diabetes Scientist Zhen Gu, PhD, a professor in the Joint University of North Carolina/North Carolina State University Department of Biomedical Engineering, is working to develop a “smart insulin” patch that imitates the body's beta cells by both sensing blood glucose levels and releasing insulin using a nanotechnology that leverages bioengineering, biochemistry and materials science.
In type 1 diabetes, patients sometimes experience what physicians have come to call a "honeymoon period" shortly after the disease is diagnosed. During the "honeymoon period" diabetes may appear to go away for a period of a few months to a year. The patient's insulin needs are minimal and some patients may actually find they can maintain normal or near normal blood glucose taking little or no insulin.
Before making any fiber recommendations, Dean has her patients tested for “pancreatic insufficiency.” She believes people with pancreatic insufficiency should be given digestive enzymes along with fiber, “otherwise the fiber will just bloat them up, and they’ll be quite unhappy,” she says. Dean uses a glucomannan fiber supplement for her patients with type 2 diabetes.

Self assessment quizzes are available for topics covered in this website. To find out how much you have learned about Treatment of Type 2 Diabetes, take our self assessment quiz when you have completed this section. The quiz is multiple choice. Please choose the single best answer to each question. At the end of the quiz, your score will display. If your score is over 70% correct, you are doing very well. If your score is less than 70%, you can return to this section and review the information.


“These findings are very exciting. They could revolutionize the way type 2 diabetes is treated. This builds on the work into the underlying cause of the condition, so that we can target management effectively,” lead researcher Roy Taylor, from the Newcastle University, told The Guardian. Interesting, indeed, as many of the current treatments for type 2 diabetes involve medication and even surgery to restrict stomach capacity.

You’re probably referring to Salacia oblonga (or S. oblonga) an herb traditionally used in Indian medicine to help control the increase in blood sugar that follows a meal. A study published in the January 2005 issue of the Journal of the American Dietetic Association found that a drink made with the herb blunts this effect and also reduces insulin levels. S. oblonga grows in India and Sri Lanka, but is not well known in the United States, and has not been widely researched.

“These findings are very exciting. They could revolutionize the way type 2 diabetes is treated. This builds on the work into the underlying cause of the condition, so that we can target management effectively,” lead researcher Roy Taylor, from the Newcastle University, told The Guardian. Interesting, indeed, as many of the current treatments for type 2 diabetes involve medication and even surgery to restrict stomach capacity.

The gastric bypass that Benari got, for instance, resculpts the digestive system. Surgeons seal off a large part of the stomach using staples, leaving behind a small upper pouch, while rerouting part of the small intestine to the new pouch, bypassing the rest. The net result is that less food can fit in the stomach, and there’s much less time for that food to be turned into calories before it exits the body. The vertical sleeve gastrectomy, the most popular surgery in recent years, only tinkers with the stomach, using staples to turn it into a small banana-shaped organ. (There are less permanent procedures, such as the lap band, but these have fallen out of favor due to their ineffectiveness).
In medical world, diabetes is known more commonly by the name of diabetes mellitus. In simpler and day-to-day language, it is referred as diabetes. It is a group of metabolic diseases in which a person has high blood sugar, either because cells do not respond to the insulin that is produced, or the body does not produce enough insulin. In both the conditions, the body is not able to get enough amount of insulin to function properly.
Currently, people with diabetes who receive a transplanted pancreas (typically not possible unless you are also having a kidney transplant) or who receive islet-cell transplants as part of a research study in the US must take these drugs so that their own body won’t attack the new cells. The drugs work, but raise risk for bacterial and viral infections as well as for mouth sores, nausea, diarrhea, high cholesterol, high blood pressure, fatigue and even some cancers.
“For me it’s a personal challenge – going from being completely 100% sedentary to climbing the highest mountain in Africa. One thing I’ve learnt on this journey is that I’m capable of so much more than I ever thought possible – and this is just another way of proving that to myself. It’s also a way of showing people with diabetes that there is always greatness within you; that you have the power to change your diagnosis and your destiny one step at a time.”
The NIH National Institute of Diabetes and Digestive Diseases and Kidney Diseases says it, “currently supports studies that are working toward obtaining FDA licensure to reclassify islet allo-transplantation as therapeutic. In other countries, such as Canada and Scandinavia, islet allo-transplantation is no longer considered experimental and is an accepted therapy in certain patients.” It adds that “Some patient advocates and islet researchers feel that islet allo-transplantation is close to having a therapeutic label.”
Reversal of type 2 diabetes to normal metabolic control by either bariatric surgery or hypocaloric diet allows for the time sequence of underlying pathophysiologic mechanisms to be observed. In reverse order, the same mechanisms are likely to determine the events leading to the onset of hyperglycemia and permit insight into the etiology of type 2 diabetes. Within 7 days of instituting a substantial negative calorie balance by either dietary intervention or bariatric surgery, fasting plasma glucose levels can normalize. This rapid change relates to a substantial fall in liver fat content and return of normal hepatic insulin sensitivity. Over 8 weeks, first phase and maximal rates of insulin secretion steadily return to normal, and this change is in step with steadily decreasing pancreatic fat content. The difference in time course of these two processes is striking. Recent information on the intracellular effects of excess lipid intermediaries explains the likely biochemical basis, which simplifies both the basic understanding of the condition and the concepts used to determine appropriate management. Recent large, long-duration population studies on time course of plasma glucose and insulin secretion before the diagnosis of diabetes are consistent with this new understanding. Type 2 diabetes has long been regarded as inevitably progressive, requiring increasing numbers of oral hypoglycemic agents and eventually insulin, but it is now certain that the disease process can be halted with restoration of normal carbohydrate and fat metabolism. Type 2 diabetes can be understood as a potentially reversible metabolic state precipitated by the single cause of chronic excess intraorgan fat.

Initial clinical trial results, published in a 2012 PLOS One paper, reported that two doses of BCG spaced four weeks apart led to reductions in autoreactive T cells, an increase in Tregs and what turned out to be a transient increase in insulin production. But by the end of that short, 20-week trial, there was no reduction in HbA1c, the established measure of blood sugar levels over time. An extension and expansion of that trial with long term follow-up, the current results are based on data from 282 human study participants – 52 with type 1 diabetes who participated in the BCG clinical trials and 230 who contributed blood samples for mechanistic studies.
The fact these improvements can happen independently of weight loss should also signify a shift in how we conceptualize both obesity and diabetes, according to Peter Billings, the Seattle bariatric surgeon who operated on Benari. Billings, a nearly 20-year veteran in the field, has started to perform surgery on other lower-BMI patients similar to Benari, though they often pay out of pocket.
Big pharma are in the early stages of developing their own cell therapy approaches for diabetes. Novo Nordisk, one of the largest providers of diabetes treatments, is bidding for stem cells and an encapsulation device, stating that the first clinical trial could take place in the “next few years.” Sanofi, also a big name in diabetes, is working with the German Evotec in a beta cell replacement therapy for diabetics.
×