Practitioners agree that nutrition is the cornerstone of diabetes management, and that a range of nutrition intervention strategies can be used to meet the metabolic goals and individual preferences of the person with diabetes. However, there are significant differences in the approach and methodologies used by alternative and conventional practitioners to manage the disease. One difference is in terminology. When is remission really remission?

If the rapid changes in metabolism following bariatric surgery are a consequence of the sudden change in calorie balance, the defects in both insulin secretion and hepatic insulin sensitivity of type 2 diabetes should be correctable by change in diet alone. To test this hypothesis, a group of people with type 2 diabetes were studied before and during a 600 kcal/day diet (21). Within 7 days, liver fat decreased by 30%, becoming similar to that of the control group, and hepatic insulin sensitivity normalized (Fig. 2). The close association between liver fat content and hepatic glucose production had previously been established (20,22,23). Plasma glucose normalized by day 7 of the diet.
Scientists are cautious, and research is continuing, but evidence is growing that the diet can indeed remove the symptoms of type 2 diabetes. The question for researchers, who are now working on identifying the type of diet that can keep diabetes at bay after reversal, is once we've beaten the condition, how do we improve our lifestyle so it doesn't return? Watch this space.
In type 1 diabetes, the body produces none of the insulin that regulates our blood sugar levels. Very high glucose levels can damage the body's organs. Patients with type 2 diabetes, however, do produce insulin - just not enough to keep their glucose levels normal. Because I was fit and not overweight (obesity is a major risk factor in type 2 diabetes; however, a number of non-obese people, particularly members of south Asian communities, are also prone to it), my doctor told me I could control my condition with diet alone.
Kelly Prinkey-Krupinski, 48 and an avid dog lover, has been struggling with adult onset Type 1 diabetes for 12 years. She said the disease runs her life. “It is a constant struggle,” she said. “My mind is always aware that every bite of food that I eat, every medicine I take, every illness and emotion I experience will affect my blood sugar. There is never a vacation from the constant balancing act to stay alive. It scares me to think of a time when I can't obtain the insulin that I must take 24-7. I would pray that there will be a cure in my lifetime. I just hate to think of the kids that struggle with Type 1 diabetes. This research with dogs sounds promising. As a dog lover myself, I would love to see if our canine friends can be cured. I'm excited to see the results.”
(function(){"use strict";function s(e){return"function"==typeof e||"object"==typeof e&&null!==e}function a(e){return"function"==typeof e}function l(e){X=e}function u(e){G=e}function c(){return function(){r.nextTick(p)}}function f(){var e=0,n=new ne(p),t=document.createTextNode("");return n.observe(t,{characterData:!0}),function(){t.data=e=++e%2}}function d(){var e=new MessageChannel;return e.port1.onmessage=p,function(){e.port2.postMessage(0)}}function h(){return function(){setTimeout(p,1)}}function p(){for(var e=0;et.length)&&(n=t.length),n-=e.length;var r=t.indexOf(e,n);return-1!==r&&r===n}),String.prototype.startsWith||(String.prototype.startsWith=function(e,n){return n=n||0,this.substr(n,e.length)===e}),String.prototype.trim||(String.prototype.trim=function(){return this.replace(/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,"")}),String.prototype.includes||(String.prototype.includes=function(e,n){"use strict";return"number"!=typeof n&&(n=0),!(n+e.length>this.length)&&-1!==this.indexOf(e,n)})},"./shared/require-global.js":function(e,n,t){e.exports=t("./shared/require-shim.js")},"./shared/require-shim.js":function(e,n,t){var r=t("./shared/errors.js"),i=(this.window,!1),o=null,s=null,a=new Promise(function(e,n){o=e,s=n}),l=function(e){if(!l.hasModule(e)){var n=new Error('Cannot find module "'+e+'"');throw n.code="MODULE_NOT_FOUND",n}return t("./"+e+".js")};l.loadChunk=function(e){return a.then(function(){return"main"==e?t.e("main").then(function(e){t("./main.js")}.bind(null,t))["catch"](t.oe):"dev"==e?Promise.all([t.e("main"),t.e("dev")]).then(function(e){t("./shared/dev.js")}.bind(null,t))["catch"](t.oe):"internal"==e?Promise.all([t.e("main"),t.e("internal"),t.e("qtext2"),t.e("dev")]).then(function(e){t("./internal.js")}.bind(null,t))["catch"](t.oe):"ads_manager"==e?Promise.all([t.e("main"),t.e("ads_manager")]).then(function(e){undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined}.bind(null,t))["catch"](t.oe):"publisher_dashboard"==e?t.e("publisher_dashboard").then(function(e){undefined,undefined}.bind(null,t))["catch"](t.oe):"content_widgets"==e?Promise.all([t.e("main"),t.e("content_widgets")]).then(function(e){t("./content_widgets.iframe.js")}.bind(null,t))["catch"](t.oe):void 0})},l.whenReady=function(e,n){Promise.all(window.webpackChunks.map(function(e){return l.loadChunk(e)})).then(function(){n()})},l.installPageProperties=function(e,n){window.Q.settings=e,window.Q.gating=n,i=!0,o()},l.assertPagePropertiesInstalled=function(){i||(s(),r.logJsError("installPageProperties","The install page properties promise was rejected in require-shim."))},l.prefetchAll=function(){t("./settings.js");Promise.all([t.e("main"),t.e("qtext2")]).then(function(){}.bind(null,t))["catch"](t.oe)},l.hasModule=function(e){return!!window.NODE_JS||t.m.hasOwnProperty("./"+e+".js")},l.execAll=function(){var e=Object.keys(t.m);try{for(var n=0;n=c?n():document.fonts.load(u(o,'"'+o.family+'"'),a).then(function(n){1<=n.length?e():setTimeout(t,25)},function(){n()})}t()});var w=new Promise(function(e,n){l=setTimeout(n,c)});Promise.race([w,m]).then(function(){clearTimeout(l),e(o)},function(){n(o)})}else t(function(){function t(){var n;(n=-1!=y&&-1!=g||-1!=y&&-1!=v||-1!=g&&-1!=v)&&((n=y!=g&&y!=v&&g!=v)||(null===f&&(n=/AppleWebKit\/([0-9]+)(?:\.([0-9]+))/.exec(window.navigator.userAgent),f=!!n&&(536>parseInt(n[1],10)||536===parseInt(n[1],10)&&11>=parseInt(n[2],10))),n=f&&(y==b&&g==b&&v==b||y==x&&g==x&&v==x||y==j&&g==j&&v==j)),n=!n),n&&(null!==_.parentNode&&_.parentNode.removeChild(_),clearTimeout(l),e(o))}function d(){if((new Date).getTime()-h>=c)null!==_.parentNode&&_.parentNode.removeChild(_),n(o);else{var e=document.hidden;!0!==e&&void 0!==e||(y=p.a.offsetWidth,g=m.a.offsetWidth,v=w.a.offsetWidth,t()),l=setTimeout(d,50)}}var p=new r(a),m=new r(a),w=new r(a),y=-1,g=-1,v=-1,b=-1,x=-1,j=-1,_=document.createElement("div");_.dir="ltr",i(p,u(o,"sans-serif")),i(m,u(o,"serif")),i(w,u(o,"monospace")),_.appendChild(p.a),_.appendChild(m.a),_.appendChild(w.a),document.body.appendChild(_),b=p.a.offsetWidth,x=m.a.offsetWidth,j=w.a.offsetWidth,d(),s(p,function(e){y=e,t()}),i(p,u(o,'"'+o.family+'",sans-serif')),s(m,function(e){g=e,t()}),i(m,u(o,'"'+o.family+'",serif')),s(w,function(e){v=e,t()}),i(w,u(o,'"'+o.family+'",monospace'))})})},void 0!==e?e.exports=a:(window.FontFaceObserver=a,window.FontFaceObserver.prototype.load=a.prototype.load)}()},"./third_party/tracekit.js":function(e,n){/**

Type 2 diabetes has long been known to progress despite glucose-lowering treatment, with 50% of individuals requiring insulin therapy within 10 years (1). This seemingly inexorable deterioration in control has been interpreted to mean that the condition is treatable but not curable. Clinical guidelines recognize this deterioration with algorithms of sequential addition of therapies. Insulin resistance and β-cell dysfunction are known to be the major pathophysiologic factors driving type 2 diabetes; however, these factors come into play with very different time courses. Insulin resistance in muscle is the earliest detectable abnormality of type 2 diabetes (2). In contrast, changes in insulin secretion determine both the onset of hyperglycemia and the progression toward insulin therapy (3,4). The etiology of each of these two major factors appears to be distinct. Insulin resistance may be caused by an insulin signaling defect (5), glucose transporter defect (6), or lipotoxicity (7), and β-cell dysfunction is postulated to be caused by amyloid deposition in the islets (8), oxidative stress (9), excess fatty acid (10), or lack of incretin effect (11). The demonstration of reversibility of type 2 diabetes offers the opportunity to evaluate the time sequence of pathophysiologic events during return to normal glucose metabolism and, hence, to unraveling the etiology.
Type 2 diabetes has long been known to progress despite glucose-lowering treatment, with 50% of individuals requiring insulin therapy within 10 years (1). This seemingly inexorable deterioration in control has been interpreted to mean that the condition is treatable but not curable. Clinical guidelines recognize this deterioration with algorithms of sequential addition of therapies. Insulin resistance and β-cell dysfunction are known to be the major pathophysiologic factors driving type 2 diabetes; however, these factors come into play with very different time courses. Insulin resistance in muscle is the earliest detectable abnormality of type 2 diabetes (2). In contrast, changes in insulin secretion determine both the onset of hyperglycemia and the progression toward insulin therapy (3,4). The etiology of each of these two major factors appears to be distinct. Insulin resistance may be caused by an insulin signaling defect (5), glucose transporter defect (6), or lipotoxicity (7), and β-cell dysfunction is postulated to be caused by amyloid deposition in the islets (8), oxidative stress (9), excess fatty acid (10), or lack of incretin effect (11). The demonstration of reversibility of type 2 diabetes offers the opportunity to evaluate the time sequence of pathophysiologic events during return to normal glucose metabolism and, hence, to unraveling the etiology.
Trick (most important): Go for longer periods of time without eating (yes, yes, fasting). Consume water only for days or weeks at a time. Your fat will literally dissolve away, and with it your type 2 diabetes and other ailments. The definitive book here is Dr. Joel Fuhrman’s book, Fasting and Eating for Health: A Medical Doctor’s Program for Conquering Disease. I highly recommend it; if you’re skeptical, read the 200+ testimonial comments on Amazon. I and at least 20 of my friends have tried fasts lasting days to weeks. It works, and it is amazing.
×