Some herbal diabetes products have turned out to be downright dangerous. In February 2000, the FDA recalled five Chinese herbal products after discovering that they contained various amounts of two prescription diabetes drugs, phenformin and glyburide. (The products are listed at www.fda.gov/oc/po/firmrecalls/Herbal.html.) Phenformin was withdrawn from the U.S. market 20 years ago after it caused serious side effects, including several deaths.
Benari doesn’t want to remain an outlier, though. And perhaps surprisingly, many doctors and surgeons are starting to agree that surgery should be considered more than a last-resort remedy for weight loss. Instead, it should be seen as a crucial aspect of diabetes care, and quite possibly the best tool we have against the chronic, often worsening condition.
Type 2 diabetes results when the body is unable to produce the amount of insulin it needs to convert food into energy or when it is unable to use insulin appropriately. Sometimes the body is actually producing more insulin than is needed by a person to keep blood glucose in a normal range. Yet blood glucose remains high, because the body's cells are resistant to the effects of insulin. Physicians and scientists believe that type 2 diabetes is caused by many factors, including insufficient insulin and insulin resistance. They increasingly believe that the relative contribution each factor makes toward causing diabetes varies from person to person.

In 2003, ephedrine -- also known as ma huang -- became the first herbal stimulant ever banned by the FDA. It was a popular component of over-the-counter weight loss drugs. Ephedrine had some benefits, but it could cause far more harm, especially in high doses: insomnia (difficulty falling and staying asleep), high blood pressure, glaucoma, and urinary retention. This herbal supplement has also been associated with numerous cases of stroke.
“BCG has been known for more than 30 years to boost production of a cytokine called tumor necrosis factor (TNF), which may be beneficial in autoimmune diseases both by eliminating the autoreactive T cells that attack an individual’s tissues – in the case of type 1 diabetes, pancreatic islets – and by inducing production of regulatory T cells (Tregs) that could prevent an autoimmune reaction. Faustman’s team first reported in 2001 that inducing TNF production could cure type 1 diabetes in mice, but since TNF dosing is toxic in humans, clinical trials have utilized BCG for its ability to elevate TNF levels safely.
Gymnema Sylvestre is a vine native to Central & South India. Used in traditional Indian medicine since the 6th century BC, the leaves of this plant contain ‘gymnemic acids’ that have the amazing ability to slow down the transport of glucose from the intestines to the bloodstream. Some scientists even believe that Gymnema Sylvestre extract can help repair and regenerate pancreatic beta cells that produce insulin!

Secret #2) Ingest large quantities of daily superfoods. I consume at least two daily superfood smoothies made with spirulina, stabilized rice bran and high-density superfood powders such as Boku Superfood (www.BokuSuperfood.com) and Living Fuel (www.LivingFuel.com). I blend them with frozen organic fruit, coconut oil and almond milk. On top of that, I take daily chlorella, astaxanthin and various Chinese medicine herbs from www.DragonHerbs.com and other high quality nutritional suppliers.


The earliest predictor of the development of type 2 diabetes is low insulin sensitivity in skeletal muscle, but it is important to recognize that this is not a distinct abnormality but rather part of the wide range expressed in the population. Those people in whom diabetes will develop simply have insulin sensitivity, mainly in the lowest population quartile (29). In prediabetic individuals, raised plasma insulin levels compensate and allow normal plasma glucose control. However, because the process of de novo lipogenesis is stimulated by higher insulin levels (38), the scene is set for hepatic fat accumulation. Excess fat deposition in the liver is present before the onset of classical type 2 diabetes (43,74–76), and in established type 2 diabetes, liver fat is supranormal (20). When ultrasound rather than magnetic resonance imaging is used, only more-severe degrees of steatosis are detected, and the prevalence of fatty liver is underestimated, with estimates of 70% of people with type 2 diabetes as having a fatty liver (76). Nonetheless, the prognostic power of merely the presence of a fatty liver is impressive of predicting the onset of type 2 diabetes. A large study of individuals with normal glucose tolerance at baseline showed a very low 8-year incidence of type 2 diabetes if fatty liver had been excluded at baseline, whereas if present, the hazard ratio for diabetes was 5.5 (range 3.6–8.5) (74). In support of this finding, a temporal progression from weight gain to raised liver enzyme levels and onward to hypertriglyceridemia and then glucose intolerance has been demonstrated (77).

Magnesium is a mineral found naturally in foods such as green leafy vegetables, nuts, seeds, and whole grains and in nutritional supplements. Magnesium is needed for more than 300 biochemical reactions. It helps regulate blood sugar levels and is needed for normal muscle and nerve function, heart rhythm, immune function, blood pressure, and for bone health.
A wide scatter of absolute levels of pancreas triacylglycerol has been reported, with a tendency for higher levels in people with diabetes (57). This large population study showed overlap between diabetic and weight-matched control groups. These findings were also observed in a more recent smaller study that used a more precise method (21). Why would one person have normal β-cell function with a pancreas fat level of, for example, 8%, whereas another has type 2 diabetes with a pancreas fat level of 5%? There must be varying degrees of liposusceptibility of the metabolic organs, and this has been demonstrated in relation to ethnic differences (72). If the fat is simply not available to the body, then the susceptibility of the pancreas will not be tested, whereas if the individual acquires excess fat stores, then β-cell failure may or may not develop depending on degree of liposusceptibility. In any group of people with type 2 diabetes, simple inspection reveals that diabetes develops in some with a body mass index (BMI) in the normal or overweight range, whereas others have a very high BMI. The pathophysiologic changes in insulin secretion and insulin sensitivity are not different in obese and normal weight people (73), and the upswing in population rates of type 2 diabetes relates to a right shift in the whole BMI distribution. Hence, the person with a BMI of 24 and type 2 diabetes would in a previous era have had a BMI of 21 and no diabetes. It is clear that individual susceptibility factors determine the onset of the condition, and both genetic and epigenetic factors may contribute. Given that diabetes cannot occur without loss of acute insulin response to food, it can be postulated that this failure of acute insulin secretion could relate to both accumulation of fat and susceptibility to the adverse effect of excess fat in the pancreas.
A computer-controlled algorithm connects the CGM and insulin pump so they communicate. As the CGM detects high blood sugar, the pump knows to provide a specific amount of insulin. The goal is to provide the patient with more normalized and ideal blood sugar management without the constant hassle of decisions by the patient who is presumably allowed to live a more normal life.
First, the health of your gut is critical to your overall health. This is because your gut is home of trillions of microbes called the gut microbiome. These microbes work in symbiotic and antagonistic relationships within your body. A 2017 study using multiple therapies to manipulate the gut microbiome composition, found they could impact the individual’s health more rapidly. This study also found manipulating the gut microbiome as an effective way to avoid insulin resistance and therefore prevent diabetes.
×