In type 2 diabetes, even though insulin resistance is what leads to the condition, injections of insulin are not the first resort. Instead, other drugs are used to help boost insulin production and the body’s regulation of it. Insulin resistance occurs when the body’s cells don’t respond properly to insulin, which is a hormone made in the pancreas that’s responsible for ferrying glucose to cells for energy.
Researcher Qizhi Tang, PhD, at the University of California, San Francisco, is studying the changes induced in beta cells by the shortage of oxygen and nutrients. Stem cell-derived islets have a low survival rate in the first few days after transplant due to the lack of adequate oxygen and nutrient supplies. However, the American Diabetes Association states, “Evidence suggests that beta cells can be trained to survive oxygen and nutrient shortages that they are exposed to before and after transplantation.”

The three primary types of diabetic medication include oral diabetes medication, insulin, and other types of injectable diabetes medicine. Within these broad groups, diabetic medication can be classified more specifically as belonging to certain classes. The following article provides a list of diabetic medication broken down by type and class of medicine.

Can prediabetes be “cured”? In the early stages of prediabetes (and type 2 diabetes), diligent attention to food choices and activity, and most importantly weight loss, can improve blood sugar numbers, effectively “reversing” the disease and reducing the odds of developing type 2 diabetes. However, some people may have underlying factors (such as family history and genetics) that put them at a greater risk of type 2 diabetes, meaning they will always require careful attention to blood sugar levels and lifestyle choices. Returning to old habits will likely put someone back on the road to prediabetes, and eventually, type 2 diabetes.
The earliest oral diabetes drugs were the sulfonylureas. These work by stimulating the pancreas to produce more insulin. The oldest of these drugs still on the market is chlorpropamide (Diabinese), which has been used for more than 50 years. The second-generation sulfonylureas are taken once or twice a day. They include glipizide (Glucotrol, Glucotrol XL), glyburide (Micronase, DiaBeta, Glynase), and glimepiride (Amaryl).
Garlic: Potent, but effective. Garlic is known as one of the oldest medicines in the world…and with good reason. An animal study that administered high doses of raw garlic to rats for 4 weeks found that it had a profound effect of reducing blood glucose levels, as well as cholesterol and triglycerides compared to rats who did not receive raw garlic (2). They also tested rats with boiled garlic, and saw no changes in blood glucose, so the benefit comes from raw garlic.
The only reason to continue to give this bad advice is the lingering fear of natural fat. If you’re going to avoid fat you need to eat more carbohydrates in order to get satiated. But in recent years the old theory about fat being dangerous has been proven incorrect and is today on its way out. Low-fat products are simply unnecessary. So this reason doesn’t hold up either.
Steve Vincent, 58, from Southampton, England, was diagnosed with type 2 in December 2010. He was told there was no known cure and he had an increased risk of heart attack, stroke, blindness and limb loss. He had a BMI of 29, weighed 93kg and showed an HbA1c of 10.7%. In summer 2011 he read the reversal story and went on a daily 600 calories green vegetable diet and three litres of water, for two months. At the end he was and remains diabetes-free. In December 2012 he told me: "All my blood test levels are within the normal range, and my cholesterol and blood pressure levels are now normal." When he came off the diet he weighed just 72kg, although he has put on weight since then as he admits he has not been eating as healthily as he might, but his BMI remains at a healthy 24, and his HbA1c level is 5.5%.
One can't, in spite of the initial reported success of following a 600 kcal vegetarian diet for 8 weeks cured all 11 participants of their diabetes, resulting in an enormous very beneficial weight loss of 15 kg and reversal of pancreatic fat infiltration that many think is the underlying defect causing type 2 diabetes, see this 2011 paper Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol only just 3 months afterwards diabetes had recurred in 5 out of the 11 see Diet reverses Type 2 Diabetes

Dr Beverley Shields, at the University of Exeter Medical School, who led the research, said: "This finding is really exciting. It suggests that a person with Type 1 diabetes will keep any working beta-cells they still have seven years after diagnosis. We are not sure why this is; it may well be that there is a small group of "resilient" beta-cells resistant to immune attack and these are left after all the "susceptible" beta-cells are destroyed. Understanding what is special about these "resilient" beta-cells may open new pathways to treatment for Type 1 diabetes."

The mice immune systems did not attack the new insulin-producing cells. Most important, according to the findings: The cells produced the right amount of insulin: not so much that they sent a mouse into a blood sugar free fall, not so little that blood sugar levels stayed high. The mice have shown no sign of diabetes for more than a year, according to the findings.
After two months under the care of the naturopath, John returned to his primary care doctor to discover that his hemoglobin A1c had dropped from 8.9% to 4.9%—a nondiabetic range. For eight months and counting, he’s been off all his diabetes medication. His last A1c reading was 5.1%. With the help of his naturopath, John seems to have reversed his diabetes.
Several types of plants are referred to as ginseng, but most studies have used American ginseng. They've shown some sugar-lowering effects in fasting and after-meal blood sugar levels, as well as in A1c results (average blood sugar levels over a 3-month period). But we need larger and more long-term studies. Researchers also found that the amount of sugar-lowering compound in ginseng plants varies widely.

This medical-grade polyester is currently used in teeth guards that kids and adults wear at night, in tiny tubes used to guide the growth of damaged nerve fibers and in surgical sutures.  Researchers are also looking at PCL’s potential as an implant to deliver medications directly to the eyes and to tumors and as a scaffold for growing human tissue.  PCL may be an ideal package for islet cells, the studies note, because it can be used to create thin, flexible membranes with pores that let in glucose and nutrients, let out insulin and exclude bigger immune-system molecules.

Foods with a low glycemic load: The glycemic index of a food tells you about the blood glucose-raising potential of the food. Foods that have a high glycemic index are converted into sugar after being eaten more quickly than low glycemic foods. If you are fighting diabetes, stick to low glycemic foods like non-starchy vegetables, stone fruits and berries, nuts, seeds, avocados, coconut, organic meat, eggs, wild-caught fish, and raw pastured dairy.

Type 2 diabetes, although influenced by a person’s genes, is largely thought to be brought about by a poor diet and being overweight for prolonged periods of time, particularly at an old age. The pancreas is either unable to produce enough insulin, or the body’s cells simply don’t react to insulin, which leads to dangerously high blood sugar levels.
Your diabetes care team may recommend that you use a continuous glucose monitor (CGM). A CGM is a wearable device that can measure blood sugar every few minutes around the clock. It's measured by a thread-like sensor inserted under the skin and secured in place. Sensors can stay in place for about a week before they have to be replaced and are accurate enough to replace frequent finger-stick testing. The more frequent CGM blood sugar readings can help you and the care team do an even better job of troubleshooting and adjusting your insulin doses and diabetes management plan to improve blood sugar control.

Although a defect in mitochondrial function is associated with extremes of insulin resistance in skeletal muscle (30), this does not appear to be relevant to the etiology of type 2 diabetes. No defect is present in early type 2 diabetes but rather is directly related to ambient plasma glucose concentration (31). Observed rates of mitochondrial ATP production can be modified by increasing or decreasing plasma fatty acid concentration (32,33). Additionally, the onset of insulin stimulation of mitochondrial ATP synthesis is slow, gradually increasing over 2 h, and quite distinct from the acute onset of insulin’s metabolic effects (34). Although it remains possible that secondary mitochondrial effects of hyperglycemia and excess fatty acids exist, there is no evidence for a primary mitochondrial defect underlying type 2 diabetes.
Diabetes is classically divided into three types: upper, middle, and lower Xiao-ke. Each has characteristic symptoms. The upper type is characterized by excessive thirst, the middle by excessive hunger, and the lower by excessive urination. These types are closely associated with the lungs, stomach, and kidneys, respectively, and all three are associated with Yin deficiency. At some point during the course of their illness, most people with diabetes manifest symptoms of all three types.
But people are curing diabetes every day. It's simple and straightforward, and when you cure diabetes, you greatly reduce your risk of heart disease, obesity and cancer at the same time. The thing is, no one will cure your diabetes for you. Sure, the drug companies want to "treat" you with diabetes drugs, but you have to keep taking those for a lifetime. They don't cure anything. The only real cure can come from YOU -- by changing what you eat and increasing your exercise.
According to Centers for Disease Control and Prevention (CDC), 30.3 million people have diabetes, or some 9.4% of the US population. Type 1 diabetes sufferers’ pancreases make very little insulin or none at all. Without insulin—the hormone that enables blood sugar to enter the cells in your body where it can be used for energy—blood sugar can’t get into cells and dangerously builds up in the bloodstream.
Chronic exposure of β-cells to triacylglycerol or fatty acids either in vitro or in vivo decreases β-cell capacity to respond to an acute increase in glucose levels (57,58). This concept is far from new (59,60), but the observations of what happens during reversal of diabetes provide a new perspective. β-Cells avidly import fatty acids through the CD36 transporter (24,61) and respond to increased fatty acid supply by storing the excess as triacylglycerol (62). The cellular process of insulin secretion in response to an increase in glucose supply depends on ATP generation by glucose oxidation. However, in the context of an oversupply of fatty acids, such chronic nutrient surfeit prevents further increases in ATP production. Increased fatty acid availability inhibits both pyruvate cycling, which is normally increased during an acute increase in glucose availability, and pyruvate dehydrogenase activity, the major rate-limiting enzyme of glucose oxidation (63). Fatty acids have been shown to inhibit β-cell proliferation in vitro by induction of the cell cycle inhibitors p16 and p18, and this effect is magnified by increased glucose concentration (64). This antiproliferative effect is specifically prevented by small interfering RNA knockdown of the inhibitors. In the Zucker diabetic fatty rat, a genetic model of spontaneous type 2 diabetes, the onset of hyperglycemia is preceded by a rapid increase in pancreatic fat (58). It is particularly noteworthy that the onset of diabetes in this genetic model is completely preventable by restriction of food intake (65), illustrating the interaction between genetic susceptibility and environmental factors.
Recent global increase in diabetes, especially type II diabetes, is a product of the global obesity epidemic and attendant increase in Metabolic syndrome. In turn this has fueled an increase in surgical intervention in the form of Bariatric surgery. Diabetes reversal often follows sustained weight loss and indeed a 2014 Cochrane review of such surgeries found diabetes improvement in 5 randomized clinical trials (4). However, depending on the country and insurance plans, such weight loss surgery can be costly. They're also not risk-free with risks varying greatly depending on the person's overall health profile and age as well as skill and experience of the surgeon.
About the author:Mike Adams (aka the "Health Ranger") is a best selling author (#1 best selling science book on and a globally recognized scientific researcher in clean foods. He serves as the founding editor of and the lab science director of an internationally accredited (ISO 17025) analytical laboratory known as CWC Labs. There, he was awarded a Certificate of Excellence for achieving extremely high accuracy in the analysis of toxic elements in unknown water samples using ICP-MS instrumentation. Adams is also highly proficient in running liquid chromatography, ion chromatography and mass spectrometry time-of-flight analytical instrumentation.

One benefit of these foods is that they generally promote weight loss, which is a major factor in reversing diabetes. A study following 306 diabetic individuals found that losing weight under a structured program (with the supervision of a primary care physician) resulted in almost half of the participants going into total diabetes remission. This means they were able to stay off their medications permanently (assuming they stayed on a healthy diet). Quality of life also improved by over seven points on average for the patients on the dietary regimen, while it decreased by about three points for the control group. (13)

Big pharma are in the early stages of developing their own cell therapy approaches for diabetes. Novo Nordisk, one of the largest providers of diabetes treatments, is bidding for stem cells and an encapsulation device, stating that the first clinical trial could take place in the “next few years.” Sanofi, also a big name in diabetes, is working with the German Evotec in a beta cell replacement therapy for diabetics.