According to the American Diabetes Association, islet transplantation can replace insulin injections and provide more physiological glucose control, but “there are not sufficient donor islets available for all the individuals who need them, and often it takes islets from several donors to transplant one recipient, exacerbating the donor shortage. A major reason for the need for multiple donors is that more than 80% of transplanted islets die within the first week after transplantation. The surviving islets may overwork and gradually die from exhaustion.”
One of the most advanced alternatives comes from the Diabetes Research Institute (DRI) in the US, which is developing a bioengineered mini-organ where insulin-producing cells are encapsulated within a protective barrier. Two years ago, the DRI announced that the first patient treated in an ongoing Phase I/II trial no longer requires insulin therapy.

The reason the body stops producing insulin is that it kills off the pancreas’ beta cells, which produce insulin. People with Type 1 diabetes must get their insulin from injections or ingestion, a cumbersome and often imprecise task. Too little insulin and blood sugar levels stay high for extended periods, potentially damaging the body; too much and blood sugar levels crash, possibly causing a person with diabetes to faint or experience an even worse problems, such as a stroke.
According to Centers for Disease Control and Prevention (CDC), 30.3 million people have diabetes, or some 9.4% of the US population. Type 1 diabetes sufferers’ pancreases make very little insulin or none at all. Without insulin—the hormone that enables blood sugar to enter the cells in your body where it can be used for energy—blood sugar can’t get into cells and dangerously builds up in the bloodstream.
The above herbs do not appear to increase insulin levels, but rather enhance carbohydrate utilization.15 Patients should have their type of diabetes and any other diagnoses confirmed before initiating any herbal treatment. In addition, one should first ascertain the credibility of the herbal therapist by inquiring about where and for how long the person received training and about membership in herbal associations such as the American Herbalists Guild. To become members, herbalists must submit three letters of reference from other professional herbalists, a description of their training, and an account of at least 4 years of experience working with medicinal herbs. As part of their training, TCM practitioners learn about the proper use of herbals.
The extent of weight loss required to reverse type 2 diabetes is much greater than conventionally advised. A clear distinction must be made between weight loss that improves glucose control but leaves blood glucose levels abnormal and weight loss of sufficient degree to normalize pancreatic function. The Belfast diet study provides an example of moderate weight loss leading to reasonably controlled, yet persistent diabetes. This study showed that a mean weight loss of 11 kg decreased fasting blood glucose levels from 10.4 to 7.0 mmol/L but that this abnormal level presaged the all-too-familiar deterioration of control (87).

What’s critical is not necessarily the cutoff itself, but where someone falls within the ranges listed above. The level of risk of developing type 2 diabetes is closely related to A1c or FPG at diagnosis. Those in the higher ranges (A1c closer to 6.4%, FPG closer to 125 mg/dl) are much more likely to progress to type 2 diabetes, whereas those at lower ranges (A1c closer to 5.7%, FPG closer to 100 mg/dl) are relatively more likely to revert back to normal glucose levels or stay within the prediabetes range. Age of diagnosis and the level of insulin production still occurring at diagnosis also impact the chances of reverting to normoglycemia (normal blood sugar levels).
As of 2010, an estimated of 285 million people have type 2 diabetes globally, making up about 90% of all the diabetes cases. There is an alarming rise in the prevalence of diabetes in every part of the world, thanks to the eating habits and sedentary lifestyle. And, as opposed to the misconception that eating sweets can result in diabetes, stress and genes can also play a major role in this. As of today, number of diabetics is far more than anytime in the past. Now, even younger generation is not spared by this disease. Generally, diabetes is more common in people who are overweight or obese. Generally, fasting blood sugar levels per 100 ml of blood should be between 80 to 120 mg, which can go up to 160 mg/100 ml of blood after meals. Anything that is constantly above 160 mg/100 ml indicates diabetes. Usually, older and obese people are at increased risk of diabetes because of their inability to produce insulin and lifestyle.
Type 2 diabetes has long been known to progress despite glucose-lowering treatment, with 50% of individuals requiring insulin therapy within 10 years (1). This seemingly inexorable deterioration in control has been interpreted to mean that the condition is treatable but not curable. Clinical guidelines recognize this deterioration with algorithms of sequential addition of therapies. Insulin resistance and β-cell dysfunction are known to be the major pathophysiologic factors driving type 2 diabetes; however, these factors come into play with very different time courses. Insulin resistance in muscle is the earliest detectable abnormality of type 2 diabetes (2). In contrast, changes in insulin secretion determine both the onset of hyperglycemia and the progression toward insulin therapy (3,4). The etiology of each of these two major factors appears to be distinct. Insulin resistance may be caused by an insulin signaling defect (5), glucose transporter defect (6), or lipotoxicity (7), and β-cell dysfunction is postulated to be caused by amyloid deposition in the islets (8), oxidative stress (9), excess fatty acid (10), or lack of incretin effect (11). The demonstration of reversibility of type 2 diabetes offers the opportunity to evaluate the time sequence of pathophysiologic events during return to normal glucose metabolism and, hence, to unraveling the etiology.
Cinnamon has the ability to lower blood sugar levels and improve your sensitivity to insulin. A study conducted at Western University of Health Sciences in Pomona, Calif. found that the consumption of cinnamon is associated with a statistically significant decrease in plasma glucose levels, LDL cholesterol and triglyceride levels. Cinnamon consumption also helped increase HDL cholesterol levels. (15)

I bring this up because sleep apnea increases a person’s risk for developing type 2 diabetes. Also, sleep-disordered breathing is also related to proper nutrition throughout life. And perhaps most importantly, the first line of defense in catching sleep-disordered breathing in patients early, are dentists. This is another area where dentists must get involved if we want to tackle the issue of pervasive type 2 diabetes with any success.