The only reason to continue to give this bad advice is the lingering fear of natural fat. If you’re going to avoid fat you need to eat more carbohydrates in order to get satiated. But in recent years the old theory about fat being dangerous has been proven incorrect and is today on its way out. Low-fat products are simply unnecessary. So this reason doesn’t hold up either.
The advice above is therefore not only illogical, but also works poorly. It completely lacks scientific support according to a Swedish expert investigation. On the contrary, in recent years similar carbohydrate-rich dietary advice has been shown to increase the risk of getting diabetes and worsen blood sugar levels long-term in people who are already diabetic. The advice doesn’t improve diabetics’ health in any other way either.

There was a clinical trial conducted at Department of Biochemistry, Postgraduate Institute of Basic Medical Sciences Madras, India that studied 22 patients with type 2 diabetes. It reported that supplementing the body with 400 mg of Gymnema Sylvestre extract daily resulted in remarkable reductions in blood glucose levels, hemoglobin A1c and glycosylated plasma protein levels. What’s even more remarkable is that by the end of this 18 month study, participants were able to reduce the dosage of their prescription diabetes medication. Five were even completely off medication and attaining stable blood sugar levels with Gymnema Sylvestre supplementation alone.

Within the hepatocyte, fatty acids can only be derived from de novo lipogenesis, uptake of nonesterified fatty acid and LDL, or lipolysis of intracellular triacylglycerol. The fatty acid pool may be oxidized for energy or may be combined with glycerol to form mono-, di-, and then triacylglycerols. It is possible that a lower ability to oxidize fat within the hepatocyte could be one of several susceptibility factors for the accumulation of liver fat (45). Excess diacylglycerol has a profound effect on activating protein kinase C epsilon type (PKCε), which inhibits the signaling pathway from the insulin receptor to insulin receptor substrate 1 (IRS-1), the first postreceptor step in intracellular insulin action (46). Thus, under circumstances of chronic energy excess, a raised level of intracellular diacylglycerol specifically prevents normal insulin action, and hepatic glucose production fails to be controlled (Fig. 4). High-fat feeding of rodents brings about raised levels of diacylglycerol, PKCε activation, and insulin resistance. However, if fatty acids are preferentially oxidized rather than esterified to diacylglycerol, then PKCε activation is prevented, and hepatic insulin sensitivity is maintained. The molecular specificity of this mechanism has been confirmed by use of antisense oligonucleotide to PKCε, which prevents hepatic insulin resistance despite raised diacylglycerol levels during high-fat feeding (47). In obese humans, intrahepatic diacylglycerol concentration has been shown to correlate with hepatic insulin sensitivity (48,49). Additionally, the presence of excess fatty acids promotes ceramide synthesis by esterification with sphingosine. Ceramides cause sequestration of Akt2 and activation of gluconeogenic enzymes (Fig. 4), although no relationship with in vivo insulin resistance could be demonstrated in humans (49). However, the described intracellular regulatory roles of diacylglycerol and ceramide are consistent with the in vivo observations of hepatic steatosis and control of hepatic glucose production (20,21).
Q. I have Type 2 diabetes, and I currently take 1,000 milligrams (mg) of metformin twice a day, 5 mg of Onglyza (saxagliptin) once a day, and 5 mg of glipizide once a day. Does it matter when I take the Onglyza and the glipizide? I used to take them both at breakfast, but I thought I might get better blood-glucose-lowering coverage if I took one of them with lunch and one with dinner.
Dr. Nyitray established Encellin soon after she received her PhD in chemistry and chemical biology from the University of California San Francisco in 2015. Her work at UCSF, with advisor Tejal Desai, PhD, chair of the Department of Bioengineering and Therapeutic Sciences in UCSF’s schools of Pharmacy and Medicine, focused on developing a packaging system for islet cells.
In investigating how BCG administration produces its beneficial effects, the research team identified a mechanism never previously seen in humans in response to treatment with any drug – a shifting of the process of glucose metabolism from oxidative phosphorylation, the most common pathway by which cells convert glucose into energy, to aerobic glycolysis, a process that involves significantly greater glucose consumption by cells. The researchers also found that BCG could reduce blood sugar elevations in mice that were caused by means other than autoimmune attack, raising the possibility that BCG vaccines could also be beneficial against type 2 diabetes.”
Called ALA for short, this vitamin-like substance neutralizes many types of free radicals. A build-up of free radicals, caused in part by high blood sugar, can lead to nerve damage and other problems. ALA may also help muscle cells take up blood sugar. In a German study, a team of scientists had 40 adults take either an ALA supplement or a placebo. At the end of the four-week study, the ALA group had improved their insulin sensitivity 27 percent. The placebo group showed no improvement. Other studies have shown a decrease in nerve pain, numbness, and burning.

7. SGLT2 Inhibitors These drugs work by increasing the amount of glucose excreted in the urine. They've been associated with weight loss and improvement in blood pressure. Side effects may include urinary tract infections and diabetic ketoacidosis, a serious condition in which acid blood levels rise. They are Invokana (canagliflozin) and Farxiga (dapagliflozin).


The study, published in Diabetes Care, measured C-peptide, which is produced at the same time and in the same quantities as the insulin that regulates our blood sugar. By measuring C-peptide levels in blood or in urine, scientists can tell how much insulin a person is producing themselves, even if they are taking insulin injections as treatment. The team studied 1,549 people with Type 1 diabetes from Exeter, England and Tayside, Scotland in the UNITED study.
High doses of magnesium may cause diarrhea, nausea, loss of appetite, muscle weakness, difficulty breathing, low blood pressure, irregular heart rate, and confusion. It can interact with certain medications, such as those for osteoporosis, high blood pressure (calcium channel blockers), as well as some antibiotics, muscle relaxants, and diuretics.​
Known for its immune-boosting and disease-fighting benefits, this Chinese herb has several positive diabetes studies behind it. Re­searchers have found that ginseng slows carbohydrate absorption; increases cells’ ability to use glucose; and increases insulin secretion from the pancreas. A team from the University of Toronto has repeatedly demonstrated that ginseng capsules lower blood glucose 15 to 20 percent compared to placebo pills. These are the best superfoods for people with diabetes.
"We plan to account for differences from mouse to human by helping dogs first. This way, the dogs can inform us on how well the treatment might work in humans," said Clarissa Hernandez Stephens, first author on the research and a graduate researcher in Purdue’s Weldon School of Biomedical Engineering. Findings appear in early view for a forthcoming issue of the American Journal of Physiology – Endocrinology and Metabolism.
Sulfonylureasmay increase the risk of death from cardiovascular disease. Prolonged exercise and alcohol intake increase the risk for hypoglycemia. Patients undergoing surgery or who have had recent trauma, stress, or infection may need to switch from a sulfonylurea to insulin to manage blood sugar levels. People with kidney or liver disease need to take precaution.

The reason they need it: Their own insulin-producing islet cells, located in the pancreas, aren’t working. Now, scientists across the US are racing to develop effective ways to transplant new islet cells in people with diabetes—an alternative that could make daily life easier and lower risk for insulin side effects like dangerous low blood sugar episodes. 


That is the goal of Imcyse, a French company running a clinical trial with an immunotherapy designed to stop type 1 diabetes. Patients that have been diagnosed within the last 6 months, who still retain some insulin-producing cells, are given a treatment designed to make the immune system destroy the specific immune cells that are attacking insulin-producing cells. Results are expected later this year and will reveal whether the treatment has the potential to become a cure.
According to TCM, the major activity of the blood is to circulate through the body, nourishing and moistening the various organs and tissues. Disharmonies of the blood may manifest as “deficient” blood or “congealed” blood. If deficient blood exists and affects the entire body, the patient may present with dry skin, dizziness, and a dull complexion. Congealed blood may manifest as sharp, stabbing pains accompanied by tumors, cysts, or swelling of the organs (i.e., the liver).4 The key organs associated with blood are the heart, liver, and spleen.
Within the hepatocyte, fatty acids can only be derived from de novo lipogenesis, uptake of nonesterified fatty acid and LDL, or lipolysis of intracellular triacylglycerol. The fatty acid pool may be oxidized for energy or may be combined with glycerol to form mono-, di-, and then triacylglycerols. It is possible that a lower ability to oxidize fat within the hepatocyte could be one of several susceptibility factors for the accumulation of liver fat (45). Excess diacylglycerol has a profound effect on activating protein kinase C epsilon type (PKCε), which inhibits the signaling pathway from the insulin receptor to insulin receptor substrate 1 (IRS-1), the first postreceptor step in intracellular insulin action (46). Thus, under circumstances of chronic energy excess, a raised level of intracellular diacylglycerol specifically prevents normal insulin action, and hepatic glucose production fails to be controlled (Fig. 4). High-fat feeding of rodents brings about raised levels of diacylglycerol, PKCε activation, and insulin resistance. However, if fatty acids are preferentially oxidized rather than esterified to diacylglycerol, then PKCε activation is prevented, and hepatic insulin sensitivity is maintained. The molecular specificity of this mechanism has been confirmed by use of antisense oligonucleotide to PKCε, which prevents hepatic insulin resistance despite raised diacylglycerol levels during high-fat feeding (47). In obese humans, intrahepatic diacylglycerol concentration has been shown to correlate with hepatic insulin sensitivity (48,49). Additionally, the presence of excess fatty acids promotes ceramide synthesis by esterification with sphingosine. Ceramides cause sequestration of Akt2 and activation of gluconeogenic enzymes (Fig. 4), although no relationship with in vivo insulin resistance could be demonstrated in humans (49). However, the described intracellular regulatory roles of diacylglycerol and ceramide are consistent with the in vivo observations of hepatic steatosis and control of hepatic glucose production (20,21).
Initial clinical trial results, published in a 2012 PLOS One paper, reported that two doses of BCG spaced four weeks apart led to reductions in autoreactive T cells, an increase in Tregs and what turned out to be a transient increase in insulin production. But by the end of that short, 20-week trial, there was no reduction in HbA1c, the established measure of blood sugar levels over time. An extension and expansion of that trial with long term follow-up, the current results are based on data from 282 human study participants – 52 with type 1 diabetes who participated in the BCG clinical trials and 230 who contributed blood samples for mechanistic studies.

Implementing integrative and functional medical nutrition therapy, I helped the patient understand that she could reverse the trajectory she was on by making lifestyle changes—and that’s what she did. We engaged in shared decision making in our ongoing nutrition consultations. Over the course of one year, her physiology and health status changed for the better. Her A1c dropped from 7.2% to 5.6%, and she no longer required medications. She continues to adhere to her new lifestyle program and is confident she’ll remain free of a diabetes diagnosis.
The mice immune systems did not attack the new insulin-producing cells. Most important, according to the findings: The cells produced the right amount of insulin: not so much that they sent a mouse into a blood sugar free fall, not so little that blood sugar levels stayed high. The mice have shown no sign of diabetes for more than a year, according to the findings.
People with diabetes are unable to control the level of sugar in their blood, usually due to a breakdown in how their bodies use the hormone insulin. It’s not completely clear how obesity can contribute to diabetes, but it is known that excess weight is associated with chronic inflammation and a dysfunctional metabolism. And these factors in turn make it easier for someone to stop responding to the presence of insulin as easily as they once did. So by using surgery to help very obese people with diabetes lose weight, the logic goes, you can indirectly treat or prevent the condition. But doctors such as David Cummings, a senior investigator at the University of Washington’s Diabetes & Obesity Center of Excellence, are pushing back against this way of thinking.

Diabetes pills are not a form of insulin. They help the body make more insulin or use insulin more effectively. This helps reduce the amount of glucose in the bloodstream between meals and at night, which helps keep blood sugar levels under control. Diabetes pills can also help with weight loss and help improve cholesterol and triglyceride levels, which tend to be abnormal in people with type 2 diabetes.
That is the goal of Imcyse, a French company running a clinical trial with an immunotherapy designed to stop type 1 diabetes. Patients that have been diagnosed within the last 6 months, who still retain some insulin-producing cells, are given a treatment designed to make the immune system destroy the specific immune cells that are attacking insulin-producing cells. Results are expected later this year and will reveal whether the treatment has the potential to become a cure.
×