We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.
High blood sugar (hyperglycemia). Your blood sugar level can rise for many reasons, including eating too much, being sick or not taking enough glucose-lowering medication. Check your blood sugar level often, and watch for signs and symptoms of high blood sugar — frequent urination, increased thirst, dry mouth, blurred vision, fatigue and nausea. If you have hyperglycemia, you'll need to adjust your meal plan, medications or both.
In obese young people, decreased β-cell function has recently been shown to predict deterioration of glucose tolerance (4,78). Additionally, the rate of decline in glucose tolerance in first-degree relatives of type 2 diabetic individuals is strongly related to the loss of β-cell function, whereas insulin sensitivity changes little (79). This observation mirrors those in populations with a high incidence of type 2 diabetes in which transition from hyperinsulinemic normal glucose tolerance to overt diabetes involves a large, rapid rise in glucose levels as a result of a relatively small further loss of acute β-cell competence (3). The Whitehall II study showed in a large population followed prospectively that people with diabetes exhibit a sudden rise in fasting glucose as β-cell function deteriorates (Fig. 5) (80). Hence, the ability of the pancreas to mount a normal, brisk insulin response to an increasing plasma glucose level is lost in the 2 years before the detection of diabetes, although fasting plasma glucose levels may have been at the upper limit of normal for several years. This was very different from the widely assumed linear rise in fasting plasma glucose level and gradual β-cell decompensation but is consistent with the time course of markers of increased liver fat before the onset of type 2 diabetes observed in other studies (81). Data from the West of Scotland Coronary Prevention Study demonstrated that plasma triacylglycerol and ALT levels were modestly elevated 2 years before the diagnosis of type 2 diabetes and that there was a steady rise in the level of this liver enzyme in the run-up to the time of diagnosis (75).
Metformin (Glucophage) is a biguanide. Biguanides lower blood glucose levels primarily by decreasing the amount of glucose produced by the liver. Metformin also helps to lower blood glucose levels by making muscle tissue more sensitive to insulin so glucose can be absorbed. It is usually taken two times a day. A side effect of metformin may be diarrhea, but this is improved when the drug is taken with food.

When our bodies are deprived of normal amounts of food they consume their own fat reserves, with the fat inside organs used up first. The idea of Taylor's diet is to use up the fat that is clogging up the pancreas and preventing it from creating insulin, until normal glucose levels return. With my GP's blessing and a home glucose-testing kit, I began my experiment.
Fluids are bodily liquids other than blood and include saliva, sweat, urine, tears, and semen. Fluids act to moisten both the exterior (skin and hair) and the internal organs. Disharmonies of fluids may result in dryness and excess heat. The key organs involved in the formation, distribution, and excretion of fluids are the lungs, spleen, and kidneys.3
Type 2 diabetes has long been known to progress despite glucose-lowering treatment, with 50% of individuals requiring insulin therapy within 10 years (1). This seemingly inexorable deterioration in control has been interpreted to mean that the condition is treatable but not curable. Clinical guidelines recognize this deterioration with algorithms of sequential addition of therapies. Insulin resistance and β-cell dysfunction are known to be the major pathophysiologic factors driving type 2 diabetes; however, these factors come into play with very different time courses. Insulin resistance in muscle is the earliest detectable abnormality of type 2 diabetes (2). In contrast, changes in insulin secretion determine both the onset of hyperglycemia and the progression toward insulin therapy (3,4). The etiology of each of these two major factors appears to be distinct. Insulin resistance may be caused by an insulin signaling defect (5), glucose transporter defect (6), or lipotoxicity (7), and β-cell dysfunction is postulated to be caused by amyloid deposition in the islets (8), oxidative stress (9), excess fatty acid (10), or lack of incretin effect (11). The demonstration of reversibility of type 2 diabetes offers the opportunity to evaluate the time sequence of pathophysiologic events during return to normal glucose metabolism and, hence, to unraveling the etiology.
Acarbose (Precose) and miglitol (Glyset) are alpha-glucosidase inhibitors. These drugs help the body to lower blood glucose levels by blocking the breakdown of starches, such as bread, potatoes, and pasta in the intestine. They also slow the breakdown of some sugars, such as table sugar. Their action slows the rise in blood glucose levels after a meal. They should be taken with the first bite of a meal. These drugs may have side effects, including gas and diarrhea.
At Diabetes Daily, we prefer using the word remission over cure because far too often the state of diabetes returns even with people’s best efforts. Regardless of the definition of a cure, finding a way to live with little to know highs or lows is a worthwhile endeavor. Long-term studies show that even a few years of great blood sugars significantly reduces your long-term risk of complications.

TCM is a system of healing that originated thousands of years ago. It has evolved into a well-developed, coherent system of medicine that uses several modalities to treat and prevent illness. The most commonly employed therapeutic methods in TCM include acupuncture/moxibustion, Chinese herbal medicine, diet therapy, mind/body exercises (Qigong and Tai Chi), and Tui Na (Chinese massage).3

James Collip refined Banting and Best’s insulin extraction and purification method. The new substance was tested in the first human in 1922. 14-year old Leonard Thompson was in a critical condition. He was given an insulin injection in his buttocks. This had a negative affect on him and he grew sicker. Collip worked to improve the insulin’s quality and Thompson received another injection soon after. This time, it lowered his blood sugar and saved his life.
Diabetes is an illness related to elevated blood sugar levels. When you stop releasing and responding to normal amounts of insulin after eating foods with carbohydrates, sugar and fats, you have diabetes. Insulin, a hormone that’s broken down and transported to cells to be used as energy, is released by the pancreas to help with the storage of sugar and fats. But people with diabetes don’t respond to insulin properly, which causes high blood sugar levels and diabetes symptoms.
You should have no more than three of these “feeding times” per day. The reason limiting the number and duration of your meal times is so important has to do with staying out of the vicious cycle of increasing insulin resistance. To get smart on insulin resistance — the cause of both type 2 diabetes and obesity — read Dr. Jason Fung’s book, The Obesity Code: Unlocking the Secrets of Weight Loss, or watch his free lecture on YouTube.
×