Within the hepatocyte, fatty acids can only be derived from de novo lipogenesis, uptake of nonesterified fatty acid and LDL, or lipolysis of intracellular triacylglycerol. The fatty acid pool may be oxidized for energy or may be combined with glycerol to form mono-, di-, and then triacylglycerols. It is possible that a lower ability to oxidize fat within the hepatocyte could be one of several susceptibility factors for the accumulation of liver fat (45). Excess diacylglycerol has a profound effect on activating protein kinase C epsilon type (PKCε), which inhibits the signaling pathway from the insulin receptor to insulin receptor substrate 1 (IRS-1), the first postreceptor step in intracellular insulin action (46). Thus, under circumstances of chronic energy excess, a raised level of intracellular diacylglycerol specifically prevents normal insulin action, and hepatic glucose production fails to be controlled (Fig. 4). High-fat feeding of rodents brings about raised levels of diacylglycerol, PKCε activation, and insulin resistance. However, if fatty acids are preferentially oxidized rather than esterified to diacylglycerol, then PKCε activation is prevented, and hepatic insulin sensitivity is maintained. The molecular specificity of this mechanism has been confirmed by use of antisense oligonucleotide to PKCε, which prevents hepatic insulin resistance despite raised diacylglycerol levels during high-fat feeding (47). In obese humans, intrahepatic diacylglycerol concentration has been shown to correlate with hepatic insulin sensitivity (48,49). Additionally, the presence of excess fatty acids promotes ceramide synthesis by esterification with sphingosine. Ceramides cause sequestration of Akt2 and activation of gluconeogenic enzymes (Fig. 4), although no relationship with in vivo insulin resistance could be demonstrated in humans (49). However, the described intracellular regulatory roles of diacylglycerol and ceramide are consistent with the in vivo observations of hepatic steatosis and control of hepatic glucose production (20,21).
“For me it’s a personal challenge – going from being completely 100% sedentary to climbing the highest mountain in Africa. One thing I’ve learnt on this journey is that I’m capable of so much more than I ever thought possible – and this is just another way of proving that to myself. It’s also a way of showing people with diabetes that there is always greatness within you; that you have the power to change your diagnosis and your destiny one step at a time.”
If this means I can get an A1c of 6.5 without any insulin then that would be great in my case. I’m type 1 diabetic that has to exercise after my meals to get my blood sugar levels down. Having a low due to insulin causes severe problems due to chronic sinus infections that won’t go away due to diabetes. I bike 31 miles after my 1st meal and walk 5 mile after my next meal which allows me to keep my insulin usage very low for a type 1. It would be a big help in my case even… Read more »
At Diabetes Daily, we prefer using the word remission over cure because far too often the state of diabetes returns even with people’s best efforts. Regardless of the definition of a cure, finding a way to live with little to know highs or lows is a worthwhile endeavor. Long-term studies show that even a few years of great blood sugars significantly reduces your long-term risk of complications.

Another popular ingredient in the Indian spice rack, curry leaves help to stabilize blood glucose levels and impact carbohydrate metabolism. An Indian study published in International Journal of Development Research studied in detail the effects curry leaves have on diabetes type 2. According to the research data, curry leaves contain a phytochemical that can help control blood sugar level in patients with Diabetes type 2 by reducing fasting and postprandial blood sugar level. Diabetic rats given a dose of about 12gm /day for a month revealed that curry leaves may treat diabetes by influencing carbohydrate metabolism and improving liver and kidney function. Also, the amazing antioxidant properties of curry leaves can boost pancreatic cell production, thereby improving insulin function.
Within the model of Five Phases, each element is associated with an organ. Wood is associated with the liver, fire with the heart, earth with the spleen-pancreas-stomach, metal with the lungs, and water with the kidneys. In addition, other phenomena, such as seasons, cardinal directions, weather, color, and emotions, are associated with each element. Within the TCM model, diagnostic information is gained by finding out patients’ favorite season, color, and predominant emotion(s).

Researchers are discovering more about the causes of type 2 diabetes but as yet there are no clear avenues for a cure. With this said, there has been success in reversing the development of type 2 diabetes. Methods which result in a significant loss of weight have been successful in helping people to control blood glucose levels and have allowed some people to come off their diabetic medication. Methods such as bariatric surgery and very low calorie diets have been successful in allowing patients to reduce dependency on medication.
Refined sugar: Refined sugar rapidly spikes blood glucose, and soda, fruit juice and other sugary beverages are the worst culprits. These forms of sugar enter the bloodstream rapidly and can cause extreme elevations in blood glucose. (7) Even though natural sweeteners like raw honey and maple syrup are better options, they can still affect blood sugar levels, so only use these foods on occasion. Your best option is to switch to stevia, a natural sweetener that won’t have as much of an impact.
If you are someone who has struggled with the roller coaster of blood sugar management, I have some good news! Research shows that there are common herbs and spices, likely ones that you already have in your kitchen, that have some potential positive effects on improving blood sugar. Today, I’m breaking down some of the superstar herbs and spices that data has indicated may help with blood sugar management.
Clearly separate from the characteristic lack of acute insulin secretion in response to increase in glucose supply is the matter of total mass of β-cells. The former determines the immediate metabolic response to eating, whereas the latter places a long-term limitation on total possible insulin response. Histological studies of the pancreas in type 2 diabetes consistently show an ∼50% reduction in number of β-cells compared with normal subjects (66). β-Cell loss appears to increase as duration of diabetes increases (67). The process is likely to be regulated by apoptosis, a mechanism known to be increased by chronic exposure to increased fatty acid metabolites (68). Ceramides, which are synthesized directly from fatty acids, are likely mediators of the lipid effects on apoptosis (10,69). In light of new knowledge about β-cell apoptosis and rates of turnover during adult life, it is conceivable that removal of adverse factors could result in restoration of normal β-cell number, even late in the disease (66,70). Plasticity of lineage and transdifferentiation of human adult β-cells could also be relevant, and the evidence for this has recently been reviewed (71). β-Cell number following reversal of type 2 diabetes remains to be examined, but overall, it is clear that at least a critical mass of β-cells is not permanently damaged but merely metabolically inhibited.
The thin silicon patch – about the size of a penny – includes more than 100 microneedles, each the size of an eyelash. “The microneedles are loaded with enzymes that are able to sense blood glucose levels and trigger rapid release of insulin into the blood stream in response to high glucose,” according to the American Diabetes Association. “Dr. Gu and his colleagues have tested this technology in a mouse model of type 1 diabetes where it was able to effectively lower blood glucose levels for up to nine hours – a promising result that sets up additional pre-clinical tests (in animals) and, hopefully, eventual clinical trials (in humans).”
After two months under the care of the naturopath, John returned to his primary care doctor to discover that his hemoglobin A1c had dropped from 8.9% to 4.9%—a nondiabetic range. For eight months and counting, he’s been off all his diabetes medication. His last A1c reading was 5.1%. With the help of his naturopath, John seems to have reversed his diabetes.
Although a close relationship exists among raised liver fat levels, insulin resistance, and raised liver enzyme levels (52), high levels of liver fat are not inevitably associated with hepatic insulin resistance. This is analogous to the discordance observed in the muscle of trained athletes in whom raised intramyocellular triacylglycerol is associated with high insulin sensitivity (53). This relationship is also seen in muscle of mice overexpressing the enzyme DGAT-1, which rapidly esterifies diacylglycerol to metabolically inert triacylglycerol (54). In both circumstances, raised intracellular triacylglycerol stores coexist with normal insulin sensitivity. When a variant of PNPLA3 was described as determining increased hepatic fat levels, it appeared that a major factor underlying nonalcoholic fatty liver disease and insulin resistance was identified (55). However, this relatively rare genetic variant is not associated with hepatic insulin resistance (56). Because the responsible G allele of PNPLA3 is believed to code for a lipase that is ineffective in triacylglycerol hydrolysis, it appears that diacylglycerol and fatty acids are sequestered as inert triacylglycerol, preventing any inhibitory effect on insulin signaling.
Because TCM defines diabetes as a disease characterized by Yin deficiency and excess internal heat, an example of a dietary prescription would be to consume spinach, which is cooling, “strengthens all the organs, lubricates the intestines, and promotes urination.”7 A recommendation might be to boil tea from spinach and drink 1 cup three times/day. Other foods considered to be cooling and beneficial for diabetes include vegetables and grains, such as celery, pumpkin, soybeans (i.e., tofu, soymilk), string beans, sweet potato/yam, turnips, tomato, wheat bran, and millet. Fruit remedies, which act in specific therapeutic ways, include crab apple, guava, plum, strawberry, and mulberry.7 It is generally recommended that patients eat a wide variety of seasonal foods and avoid or minimize consumption of sweets and fruits. Meals should be smaller, eaten more frequently, and eaten at regular times each day.

I bring this up because sleep apnea increases a person’s risk for developing type 2 diabetes. Also, sleep-disordered breathing is also related to proper nutrition throughout life. And perhaps most importantly, the first line of defense in catching sleep-disordered breathing in patients early, are dentists. This is another area where dentists must get involved if we want to tackle the issue of pervasive type 2 diabetes with any success.

×